A New Cohomology for the Morse Theory of Strongly Indefinite Functionals on Hilbert Spaces
نویسندگان
چکیده
Take a C function f :M → R on a complete Hilbert manifold which satisfies the Palais–Smale condition. Assume that it is a Morse function, meaning that the second order differential df(x) is non-degenerate at every critical point x. Recall that the Morse index m(x, f) of a critical point x is the dimension of the maximal subspace on which df(x) is negative definite. Then the basic result of Morse theory, as generalized by Palais [14], is the following: if c ∈ ]a, b[ is the only critical level in [a, b] and x0 is the only critical point at level c, then the set f b = {x ∈M | f(x) ≤ b} can be continuously deformed onto f ∪ Bm(x,f), where Bm(x,f) is an m(x, f)-dimensional closed ball, attached to f by its boundary. This local result is used to prove the well
منابع مشابه
New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces
In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...
متن کامل(C; C\')-Controlled g-Fusion Frames in Hilbert Spaces
Controlled frames in Hilbert spaces have been recently introduced by P. Balazs and etc. for improving the numerical efficiency of interactive algorithms for inverting the frame operator. In this paper we develop a theory based on g-fusion frames on Hilbert spaces, which provides exactly the frameworks not only to model new frames on Hilbert spaces but also for deriving robust operators. In part...
متن کاملSome Properties of Continuous $K$-frames in Hilbert Spaces
The theory of continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory. The $K$-frames were introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of $K$-frames, there are many differences between...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملOperator-valued bases on Hilbert spaces
In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...
متن کامل